

ASSOCIAZIONE DI INGEGNERIA OFFSHORE E MARINA

STUDI DI AGGIORNAMENTO SULL'INGEGNERIA OFF-SHORE E MARINA

"Nuove tecnologie, Nuove applicazioni, Nuove normative"

28 e 29 novembre 2016 Università degli Studi di Salerno ASSOCIAZIONE ITALIANA DI TECNICA NAVALE Ordine degli Ingegneri di Salerno Sezione Napoli - Sud Italia Ordine dei Geologi della Campania

COMITATO ORGANIZZATORE

Eugenio Pugliese Carratelli (epc@unisa.it) Elio Ciralli (elio.ciralli@cirallistudio.com) Alberto Moroso (alberto.moroso@morosostarita.it) Annapaola Fortunato (annapaola.fortunato@ordineingsa.it) Elisabetta Romano (ing.romano@libero.it) Daniela Colombo (daniela.colombo@cesi.it) Mariano Buccino (buccino@unina.it) Fabio Dentale (fdentale@unisa.it)

SEGRETERIA ORGANIZZATIVA

Ferdinando Reale Angela Di Leo

COMITATO SCIENTIFICO

Renata Archetti Eugenio Pugliese Carratelli Elio Ciralli Lorenzo Cappietti Alberto Moroso Mariano Buccino

Alberto Lamberti Felice Arena Mario Calabrese Elena Valentino Roberto Tomasicchio Giovanni Besio Carlo Lorenzoni Giovanni Ferreri Attilio Tolomeo Antonio Scamardella

Fabio Dentale

CON IL PATROCINIO DI:

CON I RINGRAZIAMENTI A:

GUARDIA COSTIERA

AIOM - SALERNO - OCT 2016

Innovazione nelle misure ondametriche in sito

AIOM 2016 Salerno 28 e 29 Ottobre 2016 AIOM In collaborazione con ATENA SUD STUDI DI AGGIORNAMENTO SULL'INGEGNERIA OFF-SHORE E MARINA

Ordine degli Ingegneri di Salerno- Ordine dei Geologi

ENVIRTECH

A group of private companies established in 2000, Meteorology, Oceanography, Environment, Marine surveillance, Maritime Security

Italian, Turkish and Chinese Data Buoy Network Thai, China, India Tsunami Warning System

Products - Marine and deep sea

Products - Marine and deep sea

Data Buoys:

MKI	-3 Dire	ectional wave and genera	l purpose buoy
MKI	II Spa	ar buoy - relay buoy	
MKI	V 3Me	etre buoy - Coastal buoy	
MK	√I Sur	veillance buoy and Multis	static sonar node
MK	√II Dire	ectional wave mini buoy	50cm)

Benthic stations

Vulcan Class sea bottom laboratory Poseidon Class Tsunameters Calypso Class Tsunameters

Leading projects

Palermo 2005

Vulcan Class

Preliminary test

7

Ø

Altimeter (0.3 - 50m)

SOA 2010

ADCP

South China Sea

Thailand 2011

MK-III

Assembling in Phuket

Ø

The special way to assemble the acoustic modems assures the best bidirectional data transfer rate.

ODAS Ocean Data Acquisition Systems

Envirtech MkI-3

Directional Wave buoy

<u>www.envirtech.co.uk</u>

	Envirtech	Fugro Oceanor Seawatch	Axys Watchkeeper	Axys 3 meters
	Deep Sea MKI-03	Wavescan		
Project Date	2007	1985	2000	1997
Displacement	782 Kg	924 Kg	540 Kg	1500 Kg
Buoyant	3 sectors assembled as conical	2 semi-discus	1 piece conical	1 piece
Dimensions	shape (PATTENTED)	Assembled to shape	1700 mm	Discus 3000 mm
	1800x1176 mm	a dish		
		2800 mm		
Above sea level	3800 mm	4500 mm	2500 mm	2400 mm
Under sea level	1950 mm	1500 mm	1000 mm	1000 mm
Buoyant Hull	Rotationally moulded	Polyethylene	Rotationally moulded	Aluminum
Floatrical	polyethylene	Solar Danala	Solar Dapala	Solar Banala
Electrical				
	Lithium Battony up to 4000	OD Wall	00 Wall	00 Wali
	Amph	optionally Lithium		
	Ampir	Amph		
Directional	micro technology sensors	Slope-Following	Triaxys solid state	Triaxys solid state
Wave Sensors	(avionic derived)	MRU Heave/Slope	sensors:	sensors:
	Sample rate 10 Hz	in oil gear (similar to	Band 1.56 seconds to	Band 1.56 seconds to
	Band 1.56 seconds to 33.33	Datawell wavec	33.33 seconds	33.33 seconds
	seconds	sensor)		
Range	Heave, DXX-DYY ±25m	Heave, Surge, Sway	Heave, DXX-DYY	(not recommended)
Accuracy	< 0.5 cm	±15m	±20m	
Direction 0 - 360°	< 0.05°	< 10cm	1 cm	
Wave Period	0.5-35sec < 0.1% of value	0.3°	< 0.1°	
		2-30sec < 2% of	0.5-30sec < 1% of	
		value	value	

Payload composed of a multisatellite multichannel (70 CH) Glonass – GPS – Galileo receiver.

Measuring procedure recognized by WMO

Data Buoys Coverage

WORLD

August 2016

Data Buoy Cooperation Panel

Platform Operating Countries

August 2016

Platforms operational during the month. GTS data as received by Meteo France.

Data Buoy Cooperation Panel

Wave Observations

August 2016

Platforms providing Wave observation measurements to the GTS during the month. GTS data as received by Meteo France. Drifting Buoys Coastal/National MB .

- JAPAN (4) IRELAND(5)
 - AUSTRALIA(8)
 - BRAZIL(7)
- CANADA(41)
- FRANCE(21)
- GERMANY(2)
- INDIA(7)
 - REPUBLIC OF KOREA(17) •
- **Fixed Platforms** UK(8)
- UK/FRANCE(1) * UK(50)
- USA(161) USA(5) *
- UNKNOWN(9)

•

Wave = 342 about 60% of moored buoys

Measuring

waves

On site

Is NOT easy

"Stiamo distruggendo la domanda interna tramite il consolidamento fiscale"

(Mario Monti alla CNN - 2013)

Types of waves					
Surface Gravity Waves	Tsunamis and infra-gravity waves	Gravity Tides			
 Height = range from small ripples up to 20 meters Periods = 1.5 - 30 sec Speed = 10 - 120 Km/h Height = open ocean < 0.5 meters; onshore < 90 meters Speed = jet-liner speeds 600-800 Km/h Wavelength = 100's of kilometers Periods = minutes ON SITE MEASURING PRINCIPLE/TECHNOLOGY					
Inertial Acoustic Doppler GNSS (GPS, DGPS, etc.) Air gap (microwaves, optical or acoustic) Slope following Diff. Pressure	In Ocean: Absolute Pressure, Post-processed GNSS. on shore: Air gap (microwaves, optical or acoustic), pressure, buoyant	Buoyant Pressure Air gap (microwaves, optical or acoustic)			

Ô

Envirtech MK-VII 50cm Data buoy

<u>www.envirtech.co.uk</u>

Envirtech DWSP - Directional Wave Sensor Payload

GENERAL INFORMATION (AS BUOY PAYLOAD)		
Wave Height/Heave	Range -25 25 m	
	Resolution 1 mm	
	Accuracy < 2 mm	
Period	Range 1.0 33 sec	
	Resolution 0.1 s	
	Accuracy 0.1 s	
Direction	Range 0 360 °	
	Resolution 0.2°	
	Accuracy 1°	
Raugh Sampling rate	Standard 6.4 samples per seconds	
	Up to 100 samples per second	

acquired for 20min

at 6.4sps and referred

to the buoy axes

Envirtech MK-VII

	Envirtech MK-VII	Datawell DWR-G4
Project Date	2016	2006
Displacement	30 Kg	17 Kg
Buoyant Dimensions	Sphere Φ 50cm	Sphere Φ 40cm
Buoyant Hull	Rotationally moulded Polyethylene + Aisi316	AISI 316
Power pack	Rechargeable lithium-ion battery 60-90 days	Primary Alkaline manganese dioxide – zinc battery 30 days
Standard Telemetry	GSM/GPRS + Inmarsat	HF / 25 Km + Argos
Directional Wave Sensors	micro technology sensors Sample rate up to 90 Hz Band 1.56 to 33.33 seconds	GPS receiver, not differential, SA vulnerable
Range Accuracy Direction 0 - 360° Wave Period	Heave, DXX-DYY ±25m < 0.5 cm < 0.1° 0.5 to 35 sec < 0.1% of value	Heave, DXX-DYY ±20m 1-2cm each direction Band 1.6 to 20 seconds
SST	0.1 °C - Internal hull	0.2°C - Internal Hull

Heave response in free floating

Measured heave spectrum (Power Spectral Density) of a 70-centimetre and 90centimetre Waverider, and a 40-centimetre diameter sphere with and without fender.

The theory curve is a simple power law based on the low frequency measurements.

Theory shows that the heave response of a sphere, submerged up to its equator, has a resonance just below the cut-off frequency.

The bigger buoys, equipped with a fender as standard, show no resonance (blue and green curves). They do illustrate the increasing cut-off frequency versus decreasing buoy diameter.

Pitch-roll resonances

Detail of the wave spectral horizontal (east) energy (Power Spectral Density).

Pitch-roll resonances are encircled

Overall hydrodynamic performance

The overall hydrodynamic performance can be studied by measuring the square root of the ratio of the vertical energy and the horizontal energy – the so called check ratio.

In the case of circular orbits (as in waves in deepwater), this ratio is unity.

In shallow-water, when the orbits are horizontal ellipses, the energy ratio is less than unity. The results of experiments at sea with free-floating buoys, with some wind waves present and hardly any swell, are presented.

The heave resonance around 1Hz is clearly seen, as is the pitch-roll resonance at lower frequencies.

On-Demand Data Network

A new paradigm for environmental data gathering

<u>www.envirtech.co.uk</u>

ODDN IS A SERVICE, ITS FEATURES ARE :

TURNKEY SOLUTION METEOROLOGIC/HYDROLOGIC /OCEANOGRAPHIC SENSORS REDUNDANT ARCHITECTURE REAL TIME DATA DISPATCHED VIA HTTPS, SFTP LOCAL SERVICE ONLINE VERIFIABLE CROWDFUNDED CAMPAIGNS ONLINE VERIFIABLE RETURN OF THE INVESTMENT

Available in selected locations starting April 2017

WHO IS INVOLVED ?

HOW IT WORKS ?

PRICE = *f* (location, sensors)

Price based on location and selected sensors for a "**3 months slot**" renewable before expiration.

ALL COMPREHENSIVE

- SENSORS
- CALIBRATION
- DEPLOYMENT
- MAINTENANCE
- RECOVERING

HOW MUCH IS A SLOT COST ?

PRICE FOR AN AVERAGE LOCATION

DIRECTIONAL WAVES + SEA SURFACE TEMPERATURE GEOREFERENCED REAL TIME DATA COLLECTION

1 SLOT (3 MONTHS) = EUR 4,500

4 SLOTS = 1 YEAR EUR 15,000 (in place of 18,000)

DELIVERY 30-45 DAYS AFTER THE ORDER

HOW TO PAY FOR A SLOT ?

CROWDFUNDING IN BITCOIN (OR ETHER) FOR EACH LOCATION

Genoa Leghorn Salerno

Palermo Catania Gioia T. Brindisi Venezia "1LGrpg6fjb9GfF65SweiHkM9JZDxsw5Edm"

"16nhyphCbYAmZ2BwUc7Zdve7WVBZoQfZdi" "14Ajg4vgHUyjoXxKkAhvXKHdq9xvvRUpHN" "1LPkF2CNcgZ9q9BVa8c2YsDuzjerXLQuB7" "166dLyQyTZMkPrFTzL95SW8CVZ1CFDfXrU" "115o56jKbmGW3WR4ViCPjbWLPZjsv8YWrh" "1MszJMZqGu8ur1nqTqyRkKAWP4GzwUhnQw" "1A5uEZWM5bZ19L8fEFBvCH9nsge2Me19gL"

CHECKABLE AT ANY TIME ON: https://blockchain.info

Within 30 days

HOW TO HAVE A ROI ?

THANK YOU FOR YOUR ATTENTION

ANY QUESTIONS ?